当前位置:首页 > 百科 > 正文

严建兵

建兵,  男,  1976年5月出生,湖北崇阳人。2003年博士毕业于华中丝没农业大学生命科学技术学院 ,曾任华中农业大学植物科学技术学院院长 ,华中农业大学生命科学院副院长 ;现任华中农业大学教授 、副校长  ,作物遗传改良国家重点实验室副主任 。

2018年荣获第七届来自中国侨界贡献奖二等奖 ;2017年,严建兵入选中组部第三批"万人计划"科技创新领军人才 ;2016年5月360百科,入选科技部2015年创新人才计划中青年科技创新领军人才 ,并获第14届中国营待青年科技奖  ,荣获2016年度国家技术发明奖二等奖(第二完成人) 。2016年4月,入选教育部"奖励计划"特聘教授 ;2015年10月,严建兵获"国家杰出青年科学基金"资助 ;入选农业部"农业科研杰出人才" ;此外,其领衔困世故视用样香点团的玉米种质资源创新和分子育种团队入选2015年度湖北省自然科学基金创新群体 ,农业部农业科研杰出人才本罗混自该及其创新团队 ;2013年教育部科技成果奖一等奖(第二完成人) ;2012年获国家自然科学基金委优秀青年基金  、荣获湖北省青年五四奖章光荣称号 ;2011年入选教育部"新世纪人才计划" 、荣获第43届"杜邦青年教授奖" ;2010年荣获日本"国际青年农业科学家奖" ;

  • 中文名称 严建兵
  • 国籍 中国
  • 民族 汉
  • 籍贯 湖北崇阳
  • 出生日期 1976年5月

介绍

 来自 严建兵,男,博士,教授,1976年5月出生。200360百科3年博士毕业于华中农业大学生命科学技术学院。毕业南打苏再后受聘于中国农业输预该江侵大学作物遗传育种系讲师,曾任华中农业大学生命科学学院转际龙目绝标挥传右地友副院长、植物科学技术学吃才波湖院院长,现为华中农业大学副校长、植物科学技术学院教授,作物遗传改良国家重点实验室副主任。以第一密编饭段失待作者或通讯作者(含共同)在Nat Genet(3篇 是激期即过之士粒广), Nat Commun(7篇 ), PNAS , PLoS Genet , Plant Cell(2篇 ), New Phytol(2篇 ), Mol Plant区革商每(8篇 ), Plant J(4篇 ), Plant Physiol(4篇 )、中国科学和科学通报等主流期刊发表间黑投那认夜衡善耐论文150余篇 ,多外概查住县工直效次应邀在国际国内学术会议答级上做大会报告。为国内外30余家状散参黄儿队军右宁袁家期刊的审稿人,并担任期刊Plant Journal , Theoretical and 侵扬将向跟究仍映态Applied Genetic面宣度训儿s , Molecular Breeding ,BMC Plant Bi宪烟教微聚将获议胜ology 和Journal of Integrative Plant Biology 等杂志编委。

教育经历

  1998.9-2003.7 华中农业大学生命科学技术学院 遗传学专业 获博士学位

  1995.9-1999.7 华中农业大学生命科学技术学院 生物技术专业 获学士学位

  1992.9-1995.7 湖北省崇阳县第一中学学习

工作经历

  2003年 中国农业大学农学与生物技术学院和中国农业大学国家玉米改良中心工抗导众丰还误由非提作,任讲师

  2005年 在中国农业大学晋升为副来自教授

  2006360百科-2008年 在国际玉米小麦改良中心(CIMMYT)和康奈尔至格杆大学从事博士后研究

  2008年,被聘为CIMMYT副科学家(Associate Scientist)。

  2009年,被聘为科学家(Scientist),主要从事玉米重要性状的关联分析和连锁分析。在CIMMYT期间主持或者主要参加了多个国际重大项精些明检送肥质敌着目,如代际挑战计划(Generation Challenge Program),盖茨梅琳达基金(Bill & Melinda Gates Foundation),丰收计划(Harvest-Plus project)等。

  2011年 华中农业大学生命科学技术学院全职教授(二级岗)

  2021年12月27日,全国农业专业学位研究生显卷效井尼别导只查规呀教育指导委员会委员。

课题项目

  玉米籽粒维生素E的遗传结构(校启动基金)

  玉米重要自交系的重测序与规模化基因挖掘(863)

  玉米抗病性数量性状位点的鉴定与精确定位(国际合作)

  玉米单倍体诱导机制的遗传和分子解析 (国家自然基金委重点项目)

  结合多组学和新兴技术开展基于知识驱动的玉米产量遗传改良(国家自有难然基金委国际(地区)合作与交流项目)

  甜玉米品质遗传基础解析及关键基配草略伟取抓代汽待请伤因挖掘和利用(国家自然基金委联合基金项目)

获奖经历

  2010年度日本国际青年农业科学家奖(Japan Internation宣来al Award for Yong Agricultural Researchers)

  2011年度第43届杜邦青年教授奖(DupontYoung Professor Award)

  2011年教育部新世纪人才计划

  2011年湖北楚天学者特聘教授

  2012年湖北五四青年奖章

  2012年优秀青年基金

  2013年入选中组部青年拔尖人才

  2013年 荣获教育部科技成果奖一等奖(第二完成人)

  2014年荣获国际玉米小麦改良中心青年杰出校友

  201唱改将怎迅使盟晚采况5年入选农业部"农业科研杰出人才",带领的玉米团留棉铁难队入选农业部"创新团队" 和湖北省自然基金委创新团队

  2015年国家杰出青年科学基金

  2016年入选第14届中国青年科技奖

  2016年入选科技部2015年创新人才推进计划中青年科技创新领军人才

  2016年入选"奖励计划"特聘教授

  2016年荣获国家技术发明奖二等奖(第二完成人)

  2017年入选第三批"万人计划"科技创新领军人才

  2018年荣争情互乐谓队获第七届中国侨界贡献奖二等奖

研究方向

  基于连锁和关联分析剖分玉米复杂数量性状镇石特还小的遗传学基础

  玉米的基因组学和分子育种

学术论文

  严建兵教授在本学科主流杂志上发表SCI论文157篇:其中4篇在线,以第一作者或通讯作者(含共同)顶复吧义形王期居现模Nat Genet(3篇), Nat Commun(溶数半春管兰世笔友胜7篇), PNAS, PLoS Genet, Plant Cell(2篇), New Phyt伤岩持使报演酸值关老势ol(2篇), Mol Plant(8篇), P抓等况否杆格lant J(4篇), Plan难希内提景t Physiol(4篇)等期刊发表论文81篇。论文累计被引频次总计7305次,单篇最高被引476次,H-index为45(基于Web of Science,20210307)。  

  • Liang Y#, Liu H#, Yan J*, Tian F* (2021) Natural Va区批既受法湖来riation in Crops: Realized Understanding, Continuing Promise. Annu Rev Plant Biol, doi: 10.1146/annurev-arplant-080720-090632
  • Li W, Yu Y, Wang L, Luo Y, Peng Y, Xu Y, Liu X, Wu S, Jian L, Xu J, Xiao Y*, Yan J*(2021) The genetic architecture of the dynamic changes in grain moisture in maize. Plant Biotechnol J, doi: 10.1111/pbi.13541
  • Yang N*, Yan J*(2021) New genomic approaches for enhancing maize genetic improvement. Curr Opin Plant Biol, doi: 10.1016/j.pbi.2020.11.002
  • Liu N, Du Y, Warburton ML, Xiao Y*, Yan J*(2020) Phenotypic plasticity contributes to maize adaptation and heterosis. Mol Biol Evol, doi: 10.1093/molbev/msaa283
  • Liu J*, Fernie AR, Yan J*(2020) Crop breeding - from experience-based selection to precision design. J Plant Physiol, 256:153313
  • Liu J, Li J, Wang H*, Yan J*(2020) Application of Deep Learning in Genomics. Sci China Life Sci, 63(12):1860-1878
  • Li Q*, Yan J* (2020) Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol, 21(1):154
  • Gui S, Yang L, Li J, Luo J, Xu X, Yuan J, Chen L, Li W, Yang X, Wu S, Li S, Wang Y, Zhu Y, Gao Q, Yang N*, Yan J* (2020) ZEAMAP, a comprehensive database adapted to the maize multi-omics era. iScience, 23(6):101241
  • Luo C, Femie AR, Yan J* (2020) Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants. Trends Plant Sci, 25(10):1030-1040
  • Huang J, Lu G, Liu L, Raihan MS, Xu J, Jian L, Zhao L, Thu M. Tran, Zhang Q, Liu J, Li W, Wei C, Braun DM, Li Q, Fernie AR, Jackson D*, Yan J* (2020) The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and grain filling. Plant Physiol, 183(4):1696-1709
  • Fernie AR*, Yan J* (2020) Targeting Key Genes to Tailor Old and New Crops for a Greener Agriculture. Mol Plant, 13(3):354-356
  • Wang S#, Tian L#, Liu H#, Li X, Zang J, Chen X, Jia X, Zheng X, Chen Y, Yan J*, Wu L* (2020) Large-scale Discovery of Non-conventional Peptides in Maize and Arabidopsis Through an Integrated Peptidogenomic Pipeline. Mol Plant, 13 (7): 1078-1093
  • Liu H#, Jian L#, Xu J#, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie AR, Yan J* (2020) High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell, 32(5):1397-1413
  • Liu H#, Wang X#, Xiao Y#, Luo J#, Qiao F#, Yang W#, Zhang R#, Meng Y, Sun J, Yan S, Peng Y, Niu L, Jian L, Song W, Yan J, Li C, Zhao Y, Liu Y, Warburton ML, Zhao J*, Yan J* (2020) CUBIC: an atlas of genetic architecturepromises directed maize improvement. Genome Biol, 21(1):20
  • Liu J*, Fernie AR, Yan J*(2020) The past, present and future of maize improvement – domestication, genomics and functional genomic routes towards crop enhancement. Plant Commun, 1,100010
  • Yang N, Wu Shen, Yan J* (2019) Structural variation in complex genome: detection, integration and function. Sci China Life Sci, 62(8): 1098-1100
  • Peng Y#, Xiong D#, Zhao L, Ouyang W, Wang S, Sun J, Zhang Q, Guan P, Xie L, Li W, Li G*, Yan J*, Li X* (2019) Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun, 10(1):2632
  • Yan J*, Tan BC (2019) Maize biology: From functional genomics to breeding application. J Integr Plant Biol, 2019, 61(6):654-657
  • Zhan W, Liu J, Pan Q, Wang H, Yan S, Li K, Deng M, Li W, Liu N, Kong Q, Fernie AR, Yan J* (2019) An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. Plant J, 100(1):114-127
  • Yang N#, Liu J#, Gao Q#, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, Li W, Liu L, Jackson D, Yan J* (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 51(6):1052-1059
  • Fernie AR*, Yan J* (2019) De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol Plant, 12(5):615-631
  • Li K#, Wen W#, Alseekh S, Yang X, Guo H, Li W, Wang L, Pan Q, Zhan W, Liu J, Li Y, Wu X, Brotman Y, Willmitzer L, Li J*, Fernie AR*, Yan J* (2019) Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. Plant J, 99(2):216-230
  • Li X#, Chen L#, Zhang Q, Sun Y, Li Q*, Yan J* (2019) BRIF-Seq: Bisulfite-Converted Randomly Integrated Fragments Sequencing at the Single-Cell Level. Mol Plant, 12(3):438-446
  • Luo C#, Li X*#, Zhang Q, Yan J*(2019) Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat Commun, 10(1):785
  • Wen W#, Jin M#, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR*, Yan J* (2018) An Integrated Multi-layered Analysis of the Metabolic Networks of Different Tissues Uncovers Key Genetic Components of Primary Metabolism in Maize. Plant J, 93(6): 1116–1128
  • Wang H, Xu S, Fan Y, Liu N, Zhan W, Liu H, Xiao Y, Li K, Pan Q, Li W, Deng M, Liu J, Jin M, Yang X, Li J, Li Q*, Yan J* (2018) Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J, 16(8):1464-1475
  • Liu H*, Yan J*(2018) Crop genome-wide association study: A harvest of biological relevance. Plant J, 97(1): 8-18
  • Jin M, Liu X*, Jia W, Liu H, Li W, Peng Y, Du Y, Wang Y, Yin Y, Zhang X, Liu Q, Deng M, Li N, Cui C, Hao D, Yan J* (2018) ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J Integr Plant Biol, 60(6):465-480
  • Ma H, Li G, Würschum T, Zhang Y, Zheng D, Yang X, Li J, Liu W*, Yan J*, Chen S* (2018) Genome-Wide Association Study of Haploid Male Fertility in Maize (Zea Mays L.). Front Plant Sci, 9:974
  • Liu C#, Li X#, Meng D#, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W*, Yan J*(2017) A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Mol Plant, 10(3):520-522
  • Liu H#, Luo X#, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J*(2017) Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol Plant, 10(3):414-426
  • Zhang X#, Huang C#, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L, Yang W*, Yan J*(2017) High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol, 173(3):1554-1564
  • Xiao Y#, Liu H#, Wu L#, Warburton M, Yan J*(2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant, 10(3):359-374
  • Liu J, Huang J, Guo H, Lan L, Wang H, Xu Y, Yang X, Li W, Tong H, Xiao Y, Pan Q, Qiao F, Raihan MS, Liu HJ, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Zhan W, Liu N, Wang H, Chen G, Li Q*, Yan J*(2017) The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice. Plant Physiol, 175(2):774-785
  • Yang N#, Xu X#, Wang R, Peng W, Cai L, Song J, Li W, Luo X, Niu L, Wang Y, Jin M, Chen L, Luo J, Deng M, Wang L, Pan Q, Liu F, Jackson D, Yang X, Chen L*, Yan J*(2017) Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun, 8(1):1874
  • Li X#, Meng D#, Chen S, Luo H, Zhang Q, Jin W*, Yan J* (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat Commun, 8(1):991
  • Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J*(2017) The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J, 15(10):1250-1263
  • Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L*, Yan J*(2017) The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations. Plant Physiol, 175(2):858-873
  • Liu H*, Yan J*(2017) RICE DOMESTICATION An imperfect African solution. Nat Plants, 3(6):17083
  • Raihan MS, Liu J, Huang J, Guo H, Pan QC, Yan J*(2016)Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theor Appl Genet, 129:1465–1477
  • Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer G, Li J, Yan J* (2016) Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol, 210(3):1083-1094
  • Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan M, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan Wei, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D,Yan J* (2016) Genome-wide dissection of the maize ear genetic architecture by using multiple populations. New Phytol, 210(3):1095-1106
  • Jin M#, Liu H#, He C#, Fu J*, Xiao Y, Wang Y, Xie W, Wang G, Yan J*(2016) Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci Rep-UK6:18936
  • Liu J, Deng M, Guo H, Raihan D, Luo J, Xu Y, Dong X, Yan J* (2015) Maize orthologs of rice GS5 and their trans-regulator are associated with kernel development. J Integr Plant Biol,57(11):943-953
  • Ding J, Ali F, Chen G, Li H, Mahuku G, Yang N, Narro L, Magorokosho C, Makumbi D, Yan J*(2015) Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol,15:206
  • Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H, Florian A, Li W, Pan Q, Nikoloski Z, Yan J*, Fernie A* (2015) Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell, 27(7): 1839–1856
  • Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang XH, Kang D*, Yan J*, Li J* (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot,66 (13): 3791-3801
  • Liu H, Wang X, Warburton M, Wen W, Jin M, Deng M, Liu J, Tong H, Pan Q, Yang X, Yan J*(2015) Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding. Mol Plant, 8(6): 871-84
  • Li X, Li L, Yan J* (2015) Dissecting meiotic recombination based on tetrad analysis by single microspore sequencing in maize. Nat Commun,6: 6648
  • Guo T, Yang N, Tong H, Pang Q, Yang X, Tang J, Wang J, Li J, Yan J* (2014) Genetic basis of grain yield heterosis in an "immortalized F2s" maize population. Theor Appl Genet,127: 2149-2158
  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J*(2014) Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel. PLoS Genet, 10(9):e1004573
  • Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J*, Yan J* (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun,5:3438
  • Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J*, Wang J*, Wang G* (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun,4:2832
  • Yang Q, Li Z, Li W, Ku L, Ye J, Li K, Yang N, Li Y, Zhong T, Li J, Chen Y*, Yan J*, Yang X*, Xu M* (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. ProcNatlAcadSciUSA,110(42):16969-16974
  • Xue Y, Warburton ML, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut JM, Li W, Zhang X, Zheng Y, Yan J* (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theo rAppl Genet, 126(10): 2587-2596
  • Ali F, Pan Q, Chen G, Zahid KR, Yan J* (2013) Evidence of multiple disease resistance (MDR) and implication of meta-analysis in marker assisted selection. PLoS ONE, 8 (7): e68150
  • Fu Z, Chai Y, Zhou Y, Yang X, Warburton ML, Xu S, Cai Y, Zhang D, Li J, Yan J* (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet,126(4):923-35
  • Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G*, Li J*, Yan J*(2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet,45(1): 43-50
  • Pan Q, Ali F, Yang X, Li J, Yan J* (2012) Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize. PLoS ONE, 7(12): e52777
  • Xu S, Zhang D, Cai Y, Zhou Y, Shah T, Ali F, Li Q, Li Z, Wang W, Li J, Yang X, Yan J* (2012) Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biol, 12:201
  • Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J*, Yan J* (2012) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS ONE, 7 (5): e36807
  • Ali F, Yan J* (2012) Disease resistance in maize and the role of molecular breeding in defending against global threat. J Integr Plant Biol,54(3): 134-151
  • Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J* (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding, 28 (4): 511-526
  • Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J* (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci,51 (6): 2569-2581
  • Li L, Li H, Li Q, Yang X, Zheng D, Warburton ML, Chai Y, Zhang P, Guo Y, Yan J*, Li J* (2011) An 11-bp Insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 6 (9): e24699
  • Yang X, Xu Y, Shah T, Li H, Han Z, Li J, Yan J* (2011) Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica,139 (8): 1045-1054
  • Yan J*, Warburton ML, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci,51 (2): 433-449
  • Zhou J, Guo Y, Gao Y, Li J, Yan J* (2011)A SSR linkage map of maize × teosinte F2 population and analysis of segregation distortion. Agr Sci China, 10 (2): 166-174
  • Wen W, Taba S, Shah T, Tovar VHC, Yan J* (2011) Detection of genetic integrity of conserved maize (Zea mays L.) germplasm in genebanks using SNP markers. Genet Resour Crop Ev,58 (2): 189-207
  • Yang X, Yan J*, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J* (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet, 121 (3): 417-431
  • Li Q, Li L, Yang X, Warburton M, Bai G, Dai J, Li J, Yan J* (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol,10 (1): 143
  • Li L, Li H, Li J, Xu S, Yang X, Li J, Yan J* (2010) A genome-wide survey of maize lipid-related genes: Candidate genes mining, digital gene expression profiling and co-location with QTL for maize kernel oil. Sci China Life Sci,53(6): 690-700
  • Yan J*, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton ML, Zhou Y, Crouch JH, Xu Y* (2010) High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breeding, 25 (3): 441-451
  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J*, Yan J* (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet, 120 (4): 753-763
  • Yan J#, Kandianis C#, Harjes C, Bai L, Kim E, Yang X, Skinner D, Fu Z, Mitchell S, Li Q, Fernandez M, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML*, Rocheford T* (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet, 42 (4): 322-327
  • Fu Z#, Yan J#, Zheng Y, Warburton ML, Crouch JH, Li J (2010) Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor Appl Genet, 120 (4): 709-720
  • Yan J, Shah T, Warburton ML*, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE, 4 (12): e8451
  • Li Q, Li L, Dai J, Li J, Yan J* (2009) Identification and characterization of CACTA transposable elements capturing gene fragments in maize. Chin Sci Bull, 54 (4), 642-651
  • YanJ, Tang H, HuangY, Zheng Y, Subhash C, Li J (2006) A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single-and two-locus levels. Chin Sci Bull, 51 (12): 1452-1461
  • Yan J, Tang H, Huang Y, Zheng Y, Li J (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 149 (1-2): 121-131
  • Yan J, Tang H, Huang Y, Shi Y, Li J, Zheng Y (2003) Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Sci Bull, 48 (23): 2601-2607
  • Liu S#, Li C#, Wang H , Wang S, Yang S, Liu X, Yan J, Li B, Beatty M, Zastrow-Hayes G , Song S*, Qin F* (2020) Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 21 (1):163
  • Luo J, Wei C, Liu H, Cheng S, Xiao Y, Wang X, Yan J, Liu J* (2020) Maize CUBIC: a comprehensive variation database for a maize synthetic population. Database, baaa044
  • Zhang H, Xiang Y, He N, Liu X, Liu H, Fang L, Zhang F, Sun X, Zhang D, Li X, Terzaghi W, Yan J, Dai M* (2020) Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-Like Nucleotidase Improves Drought Tolerance of Arabidopsis and Maize. Mol Plant, 13 (5): 760-776
  • Li H*#, Wang M#, Li W#, He L, Zhou Y, Zhu J ,Che R , Warburton ML, Yang X , Yan J(2020) Genetic Variants and Underlying Mechanisms Influencing Variance Heterogeneity in Maize. Plant J, 103 (3): 1089-1102
  • Deng M, Zhang X, Luo J, Liu H, Wen W, Luo H, Yan J, Xiao Y* (2020) Metabolomics analysis reveals differences in evolution between maize and rice. Plant J, 103(5): 1710-1722
  • Yang W*, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol Plant, 13(2):187-214
  • Liu J*, Tian Z, Xiao Y, Liu H, Hao S, Zhang X, Wang C, Sun J, Yu H, Yan J (2020) Gene Regulatory Relationship Mining Using Improved Three-Phase Dependency Analysis Approach. IEEE/ACM Trans Comput Biol Bioinform, 17(1):339-346
  • Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z* (2019) Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet. 51(10):1540-1548
  • Xu J#, Chen G#, Hermanson PJ, Xu Q, Sun C, Chen W, Kan Q, Li M, Crisp PA, Yan J, Li L, Springer NM*, Li Q* (2019) Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol, 20:243
  • 91. Zhang L, Zhang X, Wang X, Xu J, Wang M, Li L, Bai G, Fang H, Hu S, Li J, Yan J, Li J, Yang X* (2019) SEED CAROTENOID DEFICIENT Functions in Isoprenoid Biosynthesis via the Plastid MEP Pathway. Plant Physiol, 179:1723-1738
  • Li H, Thrash A, Tang JD, He L, Yan J, Warburton ML* (2019) Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. Plant J, 98(5):853-863
  • Li C#, Song W#, Luo Y#, Gao S#, Zhang R, Shi Z, Wang X, Wang R, Wang F, Wang J, Zhao Y, Su A, Wang S, Li X, Luo M, Wang S, Zhang Y, Ge J, Tan X, Yuan Y, Bi X, He H, Yan J, Wang Y*, Hu S*, Zhao J* (2019) The HuangZaoSi Maize Genome Provides Insights into Genomic Variation and Improvement History of Maize. Mol Plant, 12(3):402-409
  • Xie K*, Guo L, Bai Y, Liu W, Yan J, Bucher M* (2019) Microbiomics and Plant Health: An Interdisciplinary and International Workshop on the Plant Microbiome. Mol Plant, 12(1):1-3
  • 95. Fang H#, Fu X#, Wang Y#, Xu J, Feng H, Li W, Xu J, Jittham O, Zhang X, Zhang L, Yang N, Xu G, Wang M, Li X, Li J, Yan J, Yang X* (2019) Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J,101(2):278-292
  • Chen Q#, Han Y#, Liu H#, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X*, Tian F* (2018) Genome-Wide Association Analyses Reveal the Importance of Alternative Splicing in Diversifying Gene Function and Regulating Phenotypic Variation in Maize. Plant Cell, 30(7):1404-1423, IF=9.378
  • Sun J#, Liu H#, Liu J, Cheng S, Peng Y, Zhang Q, Yan J, Liu HJ*, Chen LL* (2018) CRISPR-Local: a local single-guide RNA (sgRNA) design tool for nonreference plant genomes. Bioinformatics, 35(14): 2501-2503
  • Liu N, Liu J, Li W, Pan Q, Liu J, Yang X, Yan J, Xiao Y* (2018) Intraspecific variation of residual heterozygosity and its utility for quantitative genetic studies in maize. BMC Plant Biol, 18(1):66
  • de Abreu E Lima F#, Li K#, Wen W, Yan J, Nikoloski Z*, Willmitzer L, Brotman Y (2018) Unraveling lipid metabolism in maize with time-resolved multi-omics data. Plant J, 93(6):1102-1115
  • Chen L#, Zhang P#, Fan Y#, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L*(2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol, 217(3):1292-1306
  • Ju C#*, Zhang W#, Liu Y, Gao Y, Wang X, Yan J, Yang X, Li J* (2018) Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biol , 18(1):171
  • Zhang R#, Xu G#, Li J, Yan J, Li H*, Yang X* (2018) Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 131(6):1207-1221
  • Pan Q, Deng M, Yan J, Li L*(2017) Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. SCI REP-UK, 7(1):1205
  • Jin M#, Zhang X#, Zhao M, Deng M, Du Y, Zhou Y, Wang S, Tohge T, Fernie AR, Willmitzer L, Brotman Y, Yan J, Wen W*(2017) Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC Plant Biol, 17(1):17
  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet,48(10):1233-41
  • Liu H, Wang F, Xiao Y, Tian Z, Wen W, Zhang X, Chen X, Liu N, Li W, Liu L, Liu J, Yan J, Liu J*(2016)MODEM: multi-omics data envelopment and mining in maize. Database,2016. pii: baw117
  • Wen W, Brotman Y, Willmitzer L, Yan J, Fernie AR*(2016)Broacening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends Genet,32(8):459-69
  • Zhang X, Warburton ML, Setter T, Liu H, Xue Y, Yang N, Yan J, Xiao Y*(2016)Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theor Appl Genet, 129:1449–1463
  • Liang X, Wang K, Huang C, Zhang X, Yan J, Yang W*(2016) A high-throughput maize kernel traits scorer based on line-scan imaging. Measurement, 90.453-460
  • Li Z, Chen J, Han L, Wen J, Chen G, Li H, Wang Y, Zhao R, Zhang X, Xia Z, Yan J, Wu J, Ding J*(2016) Association mapping resolving the major loci Scmv2 conferring resistance to sugarcane mosaic virus in maize. EUR J PlantPathol,145(2):385-391
  • Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna BM, Nair SK, Chaikam V, Rotarenco V, Shatskaya OA, Zavalishina A, Scholten S, Schon CC, Melchinger AE*(2016) The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method. Genetics,202(4):1267-76
  • Wen W*, Liu H, Zhou Y, Jin M, Yang N, Li D, Luo J, Xiao Y, Pan Q, Tohge T, Fernie A, Yan J (2016) Combining quantitative genetics approaches with regulatory network analysis to dissect the complex metabolism of the maize kernel. Plant Physiol,170(1):136-46
  • Chen G ,Wang X, Long S, Jaqueth J, Li B, Yan J, Ding J* (2016) Mapping of QTL conferring resistance to northern corn leaf blight using high-density SNPs in maize. Mol Breeding, 36:4
  • Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q,Xue J, Yan J, Li J, Yang X*(2015)Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biol,15:288
  • Chen G, Wang X, Hao J, Yan J, Ding J* (2015) Genome-Wide Association Implicates Candidate Genes Conferring Resistance to Maize Rough Dwarf Disease in Maize. PLoS ONE,10(11):e0142001
  • Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z* (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 11(11): e1005670
  • Liu L, Du Y, Huo D, Wang M, Shen X, Yue B, Qiu F, Zheng Y, Yan J, Zhang Z* (2015) Genetic Architecture of Maize Kernel Row Number and Whole Genome Prediction. Theor Appl Genet ,128:2243–2254
  • Feng Y, Zheng Q, Song H, Wang Y, Wang H, Jiang L, Yan J, Zheng Y, Yue B* (2015) Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor Appl Genet,28:2341-2350
  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LS, Qin F*(2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 6:8326
  • Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M* (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet, 47:151-157
  • Li K, Yan J, Li J, Yang X (2014) Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biology,14:152
  • Osman K, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B, Qiu F (2013) Dynamic QTL Analysis and Candidate Gene Mapping for Waterlogging Tolerance at Maize Seedling Stage. PLoS ONE, 8 (11): e79305
  • Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K, Qin F* (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet, 9(9): e1003790
  • Feng F, Deng F, Zhou P, Yan J, Wang Q, Yang R, Li X (2013) QTL mapping for the tocopherols at milk stage of kernel development in sweet corn. Euphytica,193 (3): 409-417
  • Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Zhang Z, Yan J, Yue B, Zheng Y, Qiu F* (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep,31(3): 594-606
  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet, 126 (2): 389-399
  • Guo T, Li H, Yan J, Tang J, Li J, Zhang Z, Zhang L, Wang J* (2013) Performance prediction of F-1 hybrids between recombinant inbred lines derived from two elite maize inbred lines. Theor Appl Genet,126 (1): 189-201
  • Zhang P, Allen W, Nagasawa N, Ching A, Heppard E, Li H, Hao X, Li X, Yang X, Yan J, Nagato Y, Sakai H, Shen B, Li J (2012) A transposable element insertion within ZmGE2 gene is associated with increase in embryo to endosperm ratio in maize. Theor Appl Genet,125 (7): 1463-1471
  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci,196:125-31
  • Yang X, Ma H, Zhang P, Yan J, Guo Y, Song T, Li J (2012) Characterization of QTL for oil content in maize kernel. Theor Appl Genet, 125 (6): 1169-1179
  • Ullah H, Khalil I, Durrishahwar I, Khalil I, Fayaz M, Yan J, Ali F (2012) Selecting high yielding and stable mungbean [Vigna radiata (L.) Wilczek] genotypes using GGE biplot techniques. Can J Plant Sci,92(5): 951-960
  • Chai Y, Hao X, Yang X, Allen WB, Li J, Yan J, Shen B, Li J (2012) Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breeding,29 (4): 939-949
  • Wen W, Guo T, Tovar VHC, Li H, Yan J, Taba S (2012) The strategy and potential utilization of temperate germplasm for tropical germplasm improvement: a case study of maize (Zea mays L.). Mol Breeding, 29 (4): 951-962
  • Zhou Y, Han Y, Li Z, Fu Y, Fu Z, Xu S, Li J, Yan J, Yang X (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel. J Integr Plant Biol,54 (4): 260-269
  • Wen W, Franco J, Chavez-Tovar VH, Yan J, Taba S (2012) Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. PLoS ONE, 7 (3): e32626
  • Ali F*, Muneer M, Rahman H, Noor M, Durrishahwar, Shaukat S, Yan J (2011) Heritability estimates for yield and related traits based on testcross progeny performance of resistant maize inbred lines. J Food Agric Environ, 9 (3-4): 438-443
  • Zhou L, Zhang J, Yan J, Song R (2011) Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Res, 21 (8): 1267-1270
  • Liu Y, Subhash C, Yan J, Song C, Zhao J, Li J (2011) Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environ Exp Bot,71(2): 158-165
  • Setter TL, Yan J, Warburton ML, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot,62 (2): 701-716
  • Crossa J, Campos GL, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics, 186 (2): 713-724
  • Du H, Wu H, Yan J, Li J (2010) Effects of basal media, salt concentrations, antioxidant supplements and co-effects on the Agrobacterium-mediated transformation efficiency in maize. AJB, 9 (8): 1135-1143
  • Yang X, Guo Y, Yan J, Zhang J, Song t, Rocheford T, Li J (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. TheorAppl Genet, 120 (3): 665-678
  • Ortiz R, Taba S, Tovar VHC, Mezzalama M, Xu Y, Yan J, Crouch JH (2010) Conserving and Enhancing Maize Genetic Resources as Global Public Goods-A Perspective from CIMMYT. Crop Sci,50 (1): 13-28
  • 1Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. TheorAppl Genet, 120 (2): 333-340
  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. TheorAppl Genet, 120 (1): 93-115
  • Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J (2009) Proteomic analysis of early germs with high-oil and normal inbred lines in maize. MolBiol Rep, 36 (4): 813-821
  • Chander S, Guo Y, Yang X, Yan J, Zhang Y, Song T, Li J (2008) Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breeding, 22 (3): 353-365
  • Ding J, Wang X, Chander S, Yan J, Li J (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breeding, 22 (3): 395-403
  • Chander S, Meng Y, Zhang Y, Yan J, Li J (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agr Food Chem,56 (15): 6506-6511
  • Zhang J, Lu X, Song X, Yan J, Song T, Dai J, Rocheford T, Li J(2008) Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers. Euphytica,162 (3): 335-344
  • Harjes C, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319 (5861): 330
  • Chander S, Guo Y, Yang X, Zhang J, Lu X, Yan J, Song T, Rocheford T, Li J (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet, 116 (2): 223-233
  • Ma X, Tang J, Teng W, Yan J, Meng Y, Li J (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breeding, 20 (1): 41-51
  • Tang J, Teng W, Yan J, Ma X, Meng Y, Dai J, Li J (2007) Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica,155 (1-2): 117-124
  • Tang J, Ma X, Teng W, Yan J, Wu W, Dai J, Li J (2007) Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F-2 population in maize. Chin Sci Bull, 52 (4): 477-483
  • Lu G, Tang J, Yan J, Ma X, Li J, Chen S, Ma J, Liu Z, Zhang Y, Dai J (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol,48 (10): 1233-1243
  • Ju C, Zhang F, Gao Y, Zhang W, Yan J, Dai J, Li J (2006) Cloning, chromosome mapping and expression analysis of an R2R3-MYB gene under-expressed in maize hybrid. Mol Biol Rep, 33 (2): 103-110

生活细节

  华农校友代表讲话(在华中农业大学2010年新生开学典礼上校友代表的讲话)

  亲爱的学弟学妹、尊敬的各位校领导、师长及各位家长朋友们,大家上午好!

  非常感谢母校给我这么大的荣誉让我在这样盛大的场合谈谈自己的感想。校办特地给我发了一封长长的Email,代表在座的各位学弟学妹表达你们的殷切希望,这让我备感压力。在信的最后他不忘注明报销来回车费。我想他估计是在担心我在讲话的结束来一句"车票给报销不?"。我清楚地记得,15年前,也就是1995年的9月18日,我,一个从偏僻农村来的懵懂少年,带着无限的期望、梦想和彷徨,迈进了华中农业大学的校门。我的命运从此改变。大家不知道,我高考一完就买了南下广州的车票,在我哥哥开的一个小餐馆里当勤杂工。当时我内心充满无限渴望,但表面上又装作无所谓,我知道,我的机会就这么一次,能上或者不能上。我的舅妈非常喜欢我,她就背着我偷偷上街算了一卦,算卦的人对她说凶多吉少。我的舅妈在很多年之后才敢告诉我这个事实。但结果,我被华中农业大学录取了。

  在我进校的第一天遇到一个最大的挑战,你们知道是什么吗?找不到厕所。为什么?我当时住在6栋宿舍,我发现6栋的厕所没有标明"男""女",后来我才知道,这一栋都住的是大老爷们,要女厕所干什么呢?我还发现了一个有趣的事情,就是允许女生进男生宿舍,但女生的宿舍对男生来说却是禁区。我们班当时有24个男生,7个女生,我心里想,难道是鼓励女生来追求男生吗?但我们有24个男生却只有7个女生啊,这又不符合市场规律啊,对不对?但是,穷人家的孩子也有追求爱情的权利,对吧?秉着这个理念,我大三的时候去请一个女孩子跳舞,穿了一双雨鞋,整个晚上这个女孩子就盯着我这个鞋子看,当然这个女孩子最后成为了我的夫人。从那以后,我咬咬牙,狠了狠心,花了40块钱,你们知道吗?40块当时是我半个月的生活费,在5栋宿舍前面的地摊上,买了一双黑色的皮鞋,但是我这双皮鞋刚刚穿了一天,脚就被磨起来了很多泡,因为太不适合我的脚了,所以这双皮鞋就一直躺在我宿舍的床底下,一直陪伴到我博士毕业,再也没有穿过。我回家我的妈妈常常偷偷地跟我说,儿啊,你现在应该买几件像样、正式的衣服穿穿了。但是我的妈妈她永远也不会明白,他的儿子再也不会靠衣服来提高他的自信了。

  其实我进大学以后面临的更大的挑战是学习跟不上。虽然我的高考成绩在我们那个小县城里还是不错的,能排上前几名。但是进了大学,在我们班,是6年制的生物技术本硕连读,我能算中等吧。更为严峻的是,我上课的时候根本听不懂老师讲什么,尤其是英语课。因为我上高中的时候英语课都是用中文讲的,上专业课的时候,有的同学,尤其是女同学,能把老师上课讲的东西一字不漏的记下来,我跟着大家买了一个笔记本,但是从上课开始到上课结束,我的笔记本经常是新的。其实我刚进大学的时候,特别想努力学习,为什么呢?动机很朴素--想多挣点奖学金补贴一下家用。但现实和梦想总是有差距的。那段时间我特别地苦闷,我常常想,难道这就是我要的大学生活吗?但后来有几个老师的课程给了我很大的启发,应该说激发了我很大的潜力。其中一位老师,也就是后来成为我导师的郑用琏教授。郑用琏教授是全国名师,他的讲课非常精彩。他在本科的时候给我们开了一门课,叫生物技术概论。他常常给我们描述地上长茄子,地下长土豆这样美好的前景,让我期待了好久。不过这个梦想还没有实现,但给了我去读很多相关书籍的动力。我们知道,在我们的老图书馆下面,有一个书店,我常常就在那里逛,因为当时买不起书,我就经常到那里去看,每次看上几页。这门课的考试是开卷,主要是鼓励大家畅想未来,这样的考试非常适合我,所以我就认认真真地去畅想了一个未来的场景,郑老师给了我95分,让我受到了极大的满足,同时也有更多的动力。当时我就想,原来学习就这么简单啊。大学四年级,也就是研究生一年级的时候,张启发老师给我们开了另外一门课,叫基因组研究与作物遗传改良。这门课的上法看上去相对简单,就是给大家列一堆文献,而每堂课只讲5分钟。大家平时就看文献,并根据文献写一些总结,可以用中文写也可以用英文写。张老师说,不管你中文写得好还是英文写得好,不管你的文字写得怎么样,我也不管你的英文写得对不对,只要让我明白是什么就行了,最后的成绩就是每次作业的总和。其中他给我们列了一百多篇文献。当时我英语6级还没过呢。你想想6级都没过的学生要读这么多外国文献,压力有多大。但是我坚持下来了。我给大家讲一个细节。其中有一篇文章是张启发老师课题组发在1997年的美国科学院院刊上的,讲的是杂种优势的问题。当时我把不认识的单词用字典都查出来了,但发现仍然读不懂。最后把作业交上去了,张老师给我打了成绩,先是用铅笔写了2.5,每次作业总分是5分,然后又把那个5擦去写了个0,给了我2.0分,最后写了一个批语"你完全没有读懂该篇文章"。这是他的批语。此后的三年,我无数次重读这篇文章,真的是无数次重读这篇文章,我感觉,我终于读懂了。前不久,我有一个二年级的硕士研究生告诉我,说读了张老师的这篇文章,发现这篇文章还有很多不足的地方,准备写一篇评论。我非常惊讶也非常高兴。这门让我感觉压力很大的课使我读英文文献的能力提升很快。大家知道,我们所有的研究,所有的成果都是站在前人的肩膀上,而通过大量阅读以后,我突然发现前人的基础不一定总是对的。就以张启发老师这篇文章为例,我后来还发现,至少有另外2个相当的研究跟他提出了不同的观点。那总是公说公有理,婆说婆有理。

  有了研究生的学习和海外学习的经历,我明白,学习最重要的是学习的方法、思辨的精神或者说是科学精神,而不是具体的知识。知识太多,随时会更新。那什么是科学精神呢?我的理解是凡事只根据事实做判断,而不是根据个人喜好和或感觉做判断。我心目中最讲科学精神的是方舟子。他的科普文章也写得一级棒,但他最近的遭遇却是对科学精神的最大嘲讽。

  我再给大家举个例子,大家一定知道,与我们密切相关,也与我们母校密切相关的一个科学事件或者说社会事件是什么,是BT转基因水稻的商业化,这个事如果是我读大学那会儿,我肯定是一个不折不扣的愤青,就是反对者。为什么呢?你想想啊,虫子不吃,人还能吃?这不是拿人不当回事儿嘛,对不对?但我却是一个不折不扣的支持者,为什么呢?为此,我写了很多博客文章来阐述我的观点。我有一个博客叫"种田农民",我常常在上面写一些与科学有关的事情,当然也不忘写一些风花雪月,为什么?因为通过系统和专业的科学训练,我不但明白了为什么虫子不能吃而人能吃的科学道理,而且更让我知道,这个东西对农民意味着什么,对农业意味着什么,对国家安全意味着什么。让普通民众了解真相是一个科研工作者的基本社会责任,所以,我建议在座的各位学弟学妹把"虫子不吃,人为什么能吃"当做自己大学生活的第一个科学课题,并且发出自己正确的声音。

  诺尔曼·博洛格,人称绿色革命之父,他是国际玉米小麦改良中心的创始人之一,他也是1970年诺贝尔和平奖的获得者,这是诺贝尔评奖历史上迄今为止第一次把诺贝尔和平奖颁发给一个科学家,而不是一个政客。我在国际玉米小麦改良中心的时候,住在他的楼下,我跟他住宿标准一样,他是诺贝尔奖获得者,我想在中国好歹也算个正部级干部吧,但是他的待遇和我是一样的。我们也有机会经常在食堂里一起吃早餐,他通常吃两个煎鸡蛋,我一般只吃一个,也探讨一些人生的问题和科学问题。记得四年多前我问了他一个问题,他是第一次绿色革命之父嘛,我就问,我们第二次绿色革命将会是什么,将会依靠什么核心技术?他斩钉截铁地回答:现代生物技术。既然他说到这,我就问他知不知道中国转基因水稻炒得沸沸扬扬啊?他说知道,他说中国科学家的声音太小,他们应该声音再大一点。博洛格的爱憎分明、科学激情和社会责任感让我深深为之震撼,那时候我只有三十岁,博洛格已经超过九十岁高龄。他有一句名言被广为传颂,翻译过来大意就是"那些住在办公室空调房里反对绿色革命的老爷,应该到地里去看一看,我估计他们一个月也待不住,但是我呢,却在地里待了半个多世纪"。2009年在他九十五岁高龄的时候,安然辞世。我们从此失去了一个与世界饥饿作斗争的勇士。国际玉米小麦改良中心在他经常走过的路旁,为他栽下了一棵矮化的松树,来寄托我们的哀思。因为他最大的贡献就是矮化小麦的推广与应用。矮化小麦带来了第一次绿色革命。这棵矮化的松树是对博洛格先生一生最完美的诠释。

  做一件事情很容易,但一辈子都专注于做一件事情就很难,谁做到了,谁就是伟大的。是什么东西让一个人坚持不懈、孜孜不倦一辈子做一件事情呢?我想光有激情不够,你还得有登高望远一览天下的气魄和胸怀。我非常喜欢中央电视台的一个广告语,怎么说的呢?大意是"心有多大,舞台就有多大"。一只待在井里的青蛙永远都认为天只有井口那么大。毫无疑问,美国仍然是世界上最强大的国家,美国为什么这么强大呢?我似乎有一些答案,因为工作上的关系,我参与了中国和美国自然科学基金的申请,大家知道,国家自然科学基金仍然是目前中美两国最重要的科研资助体系之一。我们在准备美国基金申请书的时候,开篇必然是:我们要研究的问题对世界、对非洲多么重要。但是中国基金申请书开篇通常却是:我们要研究的问题对中国,或者说对中国的某个地区是多么重要。这就是差别。所以我特别希望母校能开一门"农业与国家安全" 的课程,不是粮食安全,是"国家安全",通过这门课程来告诉大家我们做的事情对中国,对世界是多么重要。

  一个大学,它的价值不只在于它培养了多少科学家、政治家或者企业家,一个伟大的大学应该让它每一个学生学会生活,活出幸福美丽的人生,成就自己的梦想。同时这个大学应该通过它所有个体的努力来共同建设正直诚信、崇尚科学的风气和社会价值体系。我认为这才是一个大学的伟大之处。同样,一个伟大的大学一定是一个胸怀博大的大学,我相信,如果问世界上最差的大学是哪一个,让在校大学生来回答,他的回答一定是母校。我记得快毕业的那会儿,我也在华中农大BBS上发帖,激烈批评母校的一些不合理的地方。高翅副校长言辞恳切地给我回信,一一解释,我估计他肯定不记得这个事儿了。我想这就是一所大学的胸怀。我也一直认为一所大学BBS的水平从某种程度上反映了这所大学的水平,尤其是这所大学学生的水平。从这一点上讲,我们母校还有很大的提升空间。但如果问世界上最好的大学是哪一所大学,让校友来回答,他的回答一定是母校。这就是当学生和当校友的区别。读高中读大学的时候,我一直梦想成为一个诗人,但没有找到养活诗人的办法,所以我成为了一个科研工作者,毕业后我写了唯一的一首诗,它是用来怀念和赞美母校的,它至今还在网上流传,我谨以此献给母校和在座的各位老师同学。这首诗的题目是《美丽的校园我曾经的家》:

  曾经我美丽的校园,

  当我生命中最精彩的华章在此度过,

  我常常觉得它是那样的弱小或者不值得期待。

  而今天当我漫步在高楼林立的北京,

  发现用三块七毛钱一吨的水浇灌的小块绿地永远只是远远观赏的景色,

  大楼与大楼之间找不到一处可以休息的树荫或者石凳,

  即便是与心爱的人想有一个拥抱

  也不得不面对熙熙攘攘而又分外忙碌的人群。

  我怀念的我的母校,

  尽管它不是那样的有名,

  但它不仅仅是给我知识和智慧,

  更重要的是超过七千亩美艳的春夏秋冬的无限胸怀

  呵护着我年轻成长的近三千个日日夜夜。

  新浪博客:种田农民

展开全文阅读

上一篇
审计抽样

下一篇
审计文化