当前位置:首页 > 百科 > 正文

易理数理:象数易学数学及其应用

由于《易学》中的"象"与"数"二来自者是不可分的统一体,而事物的"形""象"又很具体,很容易被人们重视并易于分类、综合、归纳、找到规律等,而相对抽象的"易数"及其数理规律等,如果脱离了与具体实物或者实际事物的结合与运用,是难以寻找与发现的。《易理数理:象数易学数学及其应用》一书,是有关研学"象数易学"方面的著作。

  • 书名 易理数理:象数易学数学其应用
  • 作者 张延生
  • 出版社 团结出版社
  • 出版时间 2009
  • ISBN 9787802144828

作者简介

  张延生(1943-更模加费李钱知木策),教授,工程师。男,汉族,1943年3月出生于陕西省延安市瓦窑堡,山东滕县人,1969年毕业于北京航空学院发动机工艺系工艺专业,曾任光明中医函授大学易学教研室主任。兼职与曾兼职中国周易研究会题女含副会长、中华名人协会理事,炎黄道家文化研究会会长等职。1985年开始,讲学于国内外,自编易学教材17种,出版有《心易》、《羔易》,《易经与气功》、等著作与录音带。并且被数十个企,事业单位聘为决策或指导顾问。他运用独创的"易学场效应"理论,指导"首场盐复农钢"香港合资公司标牌的造型设计与创意。协助策划确定"TOM,COM"网络公司名称及上市时机等。经常参与各种测试判断实验,取得了惊人成果

编辑推荐

  《易理数理:象数易学数学及其应用》中数即是卦,卦即是场,场即是象,象即是信息,信息即是数。

目录

  前言

  绪论

  一、中国古来自代易学与数学的发展概论

  二、先秦之前的易学与数学的发展概说

  1.记数的发展

乱西完维备秋如三易  2.历法的发展

  3."数字筮符"与几何卦爻符的特点及发展

  4.关注卜筮独敌试厚调办探江从无由与刻辞方法的特点

  5.易符与几何形的汉文字的发展关系

  6.春秋战国时期易数、易卦与数学的发展

  队念德差由站(1)《九章算术》对教学发展的影响

  (2)管仲对数学发展的影响

  (3)孔子对数学发展的影响

  (4)惠施、孙子、环承考使里孙膑对数学发展的影响

  (5)墨子对数学发展的影响

  (6)易学及传统文化中诸多分类模式对数学发展的影响

  (7)天文历算对数学发展的影响

  三、秦汉之后易学与数学的发展简说

  (一)魏晋后易、玄与数学的发展

  (二)宋元时期的数春创花迅吗阶息部毛洋学发展

  (三)《太玄经》与数学的发展

  (四)其他时期有关数学发展二罗计口的杂说

  (五)象数"科学易"与数学的发展

  四、本绪论结束语

  一、"河图"内涵的数理规律

  A."河图"总体在方位上的分布结构

  B."河图数"的分布结构特点

  a."拾进制"与"九进360百科制"、"五进制"合而为一制

  b."生数"与"成数"的场效应分布特点

 批抗信庆晚 子.内层"生数"加中五,等于同方位的外一层"成数"

  丑.内层"生数"奇偶数逆时针方向相加,其和等于5

  寅.外层"成数"奇偶数逆时针方向相加,其和等于15

  卯.内层"生数"之生缩团势术和为10

  辰.外层"成数"之和为30

  巳.内外层数加中间10与5数,总和数为55

  午.内外两层的同奇或同偶两数相加,均等于10或8及12

  未.各方向上"生"、"成"数之间的"奇"、"偶"数相加,都等于"奇数"

 赶点厚干田沿放鲁犯 申.同一方向上的"生数"和"成数",都同时相加同一个数时,其和必定是另一个方位上的内层("生数")及外层("成数")数

  酉.同一方向上的"生数"和"成数".都同时加上一个5时,领依范其和的个位数是本方向的数。只是内外两层数要相互易位

  戌.任何方向上的"成数"之间相加,其和均大于10而其和的个位数,是这两个方向上的"生教"之和

  亥.内层"生数",加中10等于同方位外层相隔的"成数"

  C.加减法特点

  (一)如何确定某数的方位与其"五行"性质

  (二)另房背书刑夜白年加法及其和数大小、位置与"五散太苏行"性质的确定

  (三)减法及其差数大小、位置与"五行"性质的确定

  d雷东斤宗细镇大.旋涡旋转性结构

  e."河图"数分布的"五行"生克结构关

  f."河图"数的分布规洋极洋律与特点

  g."河图数"对其他表述系统的一些启示与影响

  ①"河图"对"天干"、"地支"表述系统的影响与启示

  ②"河图"对"五行"表述系统的影响与住半还不严掉吗启示

  ③"河图"对中医表述系统的影响与启示

  ④"河图"对数学速算与指算的影响与启示

  二、"洛书"数分布数理规律

  "洛书"数分布结构及特点

  A."洛书"总体方位分布结构

  B."洛书数"的分布结构特点

  a."九进制"

  b.乘除法特点

  c."洛书"的乘除法则

  (一)"洛书数"乘除16法则

  定理一、用3左旋乘"奇数"

  定理二、用8左旋乘"偶数"

  定理三、用3左旋乘"偶数"

  定理四、用8左旋乘"奇数"

  定理五、用2右旋乘"偶数"

  定理六、用7右旋乘"奇数"

  定理七、用2右旋乘"奇数"

  定理八、用7右旋乘"偶数"

  定理九、用l乘"奇数"

  定理十、用6乘"偶数"

  定理十一、用1乘"偶数"

  定理十二、用6乘"奇数"

  定理十三、用4乘"偶数"

  定理十四、用9乘"奇数"

  定理十五、用4乘"奇数"

  定理十六、用9乘"偶数"

  (二)"洛书数"的乘除八法原则

  规律一、用3与8左旋乘"奇数"或"偶数"

  规律二、用2与7右旋乘"奇数"或"偶数"

  规律三、2数乘以"奇数"

  规律四、用l与6相乘

  规律五、用6乘"奇数"

  规律六、用4与9相乘

  规律七、"洛书数"中还有"合数"和"对数"之分

  A.凡是以"合数"共同乘上一个数,所得到的数值必定是相同的数值

  B.若"合数"各自自身相乘,得到的必然还是"合数"

  C.以"对数"共乘一个数,得到的必定是"对数"

  D.若这些"对数"各自自身相乘,所得之数必定是相同的数

  E.若"合数"以自乘之数去合其相"从"之数,有如下规律

  甲、此数得到的是自身之数,则另一个数也得到的是自身之数

  乙、若"合数"关系的数之间,此数得到的是"对数",则另一数得到的也是"对数"

  丙、若"合数"二者间,此数得到的是"连数",则另一数得到的也是"连数"

  F.相"对"而又相"从"者问的关系规律

  (一)此数得自数,则彼数得"对数"

  (二)相"对"而相"从"者,此数得"连数",则彼数也会得该"连数"

  规律八、就"洛书数"分布之位来讲,1、6;2、7表示"纬"度状态;4、9;3、8表示"经"度状态

  d."洛书"数的加减法规律

  (一)"奇数"左旋加减法则

  ①用"奇数"左旋相加"奇数",得与该"奇数"相连的"偶数"

  ②用"奇数"减左旋相连之"偶数",得与该"奇

  ……

  ……

展开全文阅读